The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 281 – 300 of 2843

Showing per page

An elementary proof of the Briançon-Skoda theorem

Jacob Sznajdman (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function φ belongs to an ideal I of the ring of germs of analytic functions at 0 n ; more precisely, the ideal membership is obtained if a function associated with φ and I is locally square integrable. If I can be generated by m elements,it follows in particular that I min ( m , n ) ¯ I , where J ¯ denotes the integral closure of an ideal J .

An equicharacteristic analogue of Hesselholt's conjecture on cohomology of Witt vectors

Amit Hogadi, Supriya Pisolkar (2013)

Acta Arithmetica

Let L/K be a finite Galois extension of complete discrete valued fields of characteristic p. Assume that the induced residue field extension k L / k K is separable. For an integer n ≥ 0, let W n ( L ) denote the ring of Witt vectors of length n with coefficients in L . We show that the proabelian group H 1 ( G , W n ( L ) ) n is zero. This is an equicharacteristic analogue of Hesselholt’s conjecture, which was proved before when the discrete valued fields are of mixed characteristic.

An example of a simple derivation in two variables

Andrzej Nowicki (2008)

Colloquium Mathematicae

Let k be a field of characteristic zero. We prove that the derivation D = / x + ( y s + p x ) ( / y ) , where s ≥ 2, 0 ≠ p ∈ k, of the polynomial ring k[x,y] is simple.

Currently displaying 281 – 300 of 2843