Arithmetic on two dimensional local rings.
Let be a complete Noetherian local ring, an ideal of and a nonzero Artinian -module. In this paper it is shown that if is a prime ideal of such that and is not finitely generated and for each the -module is of finite length, then the -module is not of finite length. Using this result, it is shown that for all finitely generated -modules with and for all integers , the -modules are of finite length, if and only if, for all finitely generated -modules with and...
Let be an ideal of Noetherian local ring and a finitely generated -module of dimension . In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to . Also we prove that for an arbitrary local ring (not necessarily complete), we have
In 2012, Ananthnarayan, Avramov and Moore gave a new construction of Gorenstein rings from two Gorenstein local rings, called their connected sum. In this article, we investigate conditions on the associated graded ring of a Gorenstein Artin local ring , which force it to be a connected sum over its residue field. In particular, we recover some results regarding short, and stretched, Gorenstein Artin rings. Finally, using these decompositions, we obtain results about the rationality of the Poincaré...
Let R be a commutative ring and let M be an R-module. The aim of this paper is to establish an efficient decomposition of a proper submodule N of M as an intersection of primal submodules. We prove the existence of a canonical primal decomposition, , where the intersection is taken over the isolated components of N that are primal submodules having distinct and incomparable adjoint prime ideals . Using this decomposition, we prove that for ∈ Supp(M/N), the submodule N is an intersection of -primal...
Let ⊆ be ideals of a Noetherian ring R, and let N be a non-zero finitely generated R-module. The set Q̅*(,N) of quintasymptotic primes of with respect to N was originally introduced by McAdam. Also, it has been shown by Naghipour and Schenzel that the set of associated primes is finite. The purpose of this paper is to show that the topology on N defined by is finer than the topology defined by if and only if is disjoint from the quintasymptotic primes of with respect to N. Moreover, we show...