Numerical invariants of liasion classes.
We study numerical semigroups with the property that if is the multiplicity of and is the least element of congruent with modulo , then . The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.
Let be a free module over a noetherian ring. For , let be the ideal generated by coefficients of . For an element with , if , there exists such that .This is a generalization of a lemma on the division of forms due to de Rham (Comment. Math. Helv., 28 (1954)) and has some applications to the study of singularities.
We present a very general construction of a chain complex for an arbitrary (even non-associative and non-commutative) algebra with unit and with any topology over a field with a suitable topology. We prove that for the algebra of smooth functions on a smooth manifold with the weak topology the homology vector spaces of this chain complex coincide with the classical singular homology groups of the manifold with real coefficients. We also show that for an associative and commutative algebra with unit...
If is a Tychonoff space, its ring of real-valued continuous functions. In this paper, we study non-essential ideals in . Let be a infinite cardinal, then is called -Kasch (resp. -Kasch) space if given any ideal (resp. -ideal) with then is a non-essential ideal. We show that is an -Kasch space if and only if is an almost -space and is an -Kasch space if and only if is a pseudocompact and almost -space. Let denote the socle of . For a topological space with only...