The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1721 – 1740 of 2843

Showing per page

On the ring of constants for derivations of power series rings in two variables

Leonid Makar-Limanov, Andrzej Nowicki (2001)

Colloquium Mathematicae

Let k[[x,y]] be the formal power series ring in two variables over a field k of characteristic zero and let d be a nonzero derivation of k[[x,y]]. We prove that if Ker(d) ≠ k then Ker(d) = Ker(δ), where δ is a jacobian derivation of k[[x,y]]. Moreover, Ker(d) is of the form k[[h]] for some h ∈ k[[x,y]].

On the rings of formal solutions of polynomial differential equations

Maria-Angeles Zurro (1998)

Banach Center Publications

The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.

On the S-Euclidean minimum of an ideal class

Kevin J. McGown (2015)

Acta Arithmetica

We show that the S-Euclidean minimum of an ideal class is a rational number, generalizing a result of Cerri. In the proof, we actually obtain a slight refinement of this and give some corollaries which explain the relationship of our results with Lenstra's notion of a norm-Euclidean ideal class and the conjecture of Barnes and Swinnerton-Dyer on quadratic forms. In particular, we resolve a conjecture of Lenstra except when the S-units have rank one. The proof is self-contained but uses ideas from...

On the stable equivalence problem for k[x,y]

Robert Dryło (2011)

Colloquium Mathematicae

L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.

On the structure of linear recurrent error-control codes

Michel Fliess (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the structure of linear recurrent error-control codes

Michel Fliess (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.

On the structure of sequentially Cohen-Macaulay bigraded modules

Leila Parsaei Majd, Ahad Rahimi (2015)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x m , y 1 , ... , y n ] be the standard bigraded polynomial ring over K . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S -modules with respect to Q = ( y 1 , ... , y n ) . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

Currently displaying 1721 – 1740 of 2843