A remark on the spectra of rings with Gabriel dimension
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
1. Introduction. In this note we give necessary and sufficient conditions for an integral domain to be a principal ideal domain. Curiously, these conditions are similar to those that characterize Euclidean domains. In Section 2 we establish notation, discuss related results and prove our theorem. Finally, in Section 3 we give two nontrivial applications to real quadratic number fields.
The aim of this note is to give an alternative proof of uniqueness for the decomposition of a finitely generated torsion module over a P.I.D. (= principal ideal domain) as a direct sum of indecomposable submodules.Our proof tries to mimic as far as we can the standard procedures used when dealing with vector spaces.For the sake of completeness we also include a proof of the existence theorem.
We give a short proof of a counterexample (due to Daigle and Freudenburg) to Hilbert's fourteenth problem in dimension five.
In Computer Algebra, Subresultant Theory provides a powerful method to construct algorithms solving problems for polynomials in one variable in an optimal way. So, using this method we can compute the greatest common divisor of two polynomials in one variable with integer coefficients avoiding the exponential growth of the coefficients that will appear if we use the Euclidean Algorithm.In this note, generalizing a forgotten construction appearing in [Hab], we extend the Subresultant Theory to the...