The search session has expired. Please query the service again.
Displaying 141 –
160 of
274
We show that for each genus there are only finitely many algebraically primitive Teichmüller curves , such that (i) lies in the hyperelliptic locus and (ii) is generated by an abelian differential with two zeros of order . We prove moreover that for these Teichmüller curves the trace field of the affine group is not only totally real but cyclotomic.
We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.
Let C be a smooth 5-gonal curve of genus 9. Assume all linear systems g15 on C are of type I (i.e. they can be counted with multiplicity 1) and let m be the numer of linear systems g15 on C. The only possibilities are m=1; m=2; m=3 and m=6. Each of those possibilities occur.
Let be a smooth, affine complex variety, which, considered as a complex manifold, has the singular -cohomology of a point. Suppose that is a complex algebraic group acting algebraically on . Our main results are the following: if is semi-simple, then the generic fiber of the quotient map contains a dense orbit. If is connected and reductive, then the action has fixed points if .
We generalize Colliot-Thélène’s construction of flasque resolutions of reductive group schemes over a field to a broad class of base schemes.
Currently displaying 141 –
160 of
274