The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 981 – 1000 of 3997

Showing per page

Finite mutation classes of coloured quivers

Hermund André Torkildsen (2011)

Colloquium Mathematicae

We show that the mutation class of a coloured quiver arising from an m-cluster tilting object associated with a finite-dimensional hereditary algebra H, is finite if and only if H is of finite or tame representation type, or it has at most two simples. This generalizes a result known for cluster categories.

Finite presentation and purity in categories σ[M]

Mike Prest, Robert Wisbauer (2004)

Colloquium Mathematicae

For any module M over an associative ring R, let σ[M] denote the smallest Grothendieck subcategory of Mod-R containing M. If σ[M] is locally finitely presented the notions of purity and pure injectivity are defined in σ[M]. In this paper the relationship between these notions and the corresponding notions defined in Mod-R is investigated, and the connection between the resulting Ziegler spectra is discussed. An example is given of an M such that σ[M] does not contain any non-zero finitely presented...

Finite-dimensional twisted group algebras of semi-wild representation type

Leonid F. Barannyk (2010)

Colloquium Mathematicae

Let G be a finite group, K a field of characteristic p > 0, and K λ G the twisted group algebra of G over K with a 2-cocycle λ ∈ Z²(G,K*). We give necessary and sufficient conditions for K λ G to be of semi-wild representation type in the sense of Drozd. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild, purely semi-wild) and we exhibit finite groups of each type.

Finitely silting comodules in quasi-finite comodule category

Qianqian Yuan, Hailou Yao (2023)

Czechoslovak Mathematical Journal

We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.

Finiteness aspects of Gorenstein homological dimensions

Samir Bouchiba (2013)

Colloquium Mathematicae

We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R), leftspli(R),...

Finiteness of local homology modules

Shahram Rezaei (2020)

Archivum Mathematicum

Let I be an ideal of Noetherian ring R and M a finitely generated R -module. In this paper, we introduce the concept of weakly colaskerian modules and by using this concept, we give some vanishing and finiteness results for local homology modules. Let I M : = Ann R ( M / I M ) , we will prove that for any integer n If ...

Finiteness of the strong global dimension of radical square zero algebras

Otto Kerner, Andrzej Skowroński, Kunio Yamagata, Dan Zacharia (2004)

Open Mathematics

The strong global dimension of a finite dimensional algebra A is the maximum of the width of indecomposable bounded differential complexes of finite dimensional projective A-modules. We prove that the strong global dimension of a finite dimensional radical square zero algebra A over an algebraically closed field is finite if and only if A is piecewise hereditary. Moreover, we discuss results concerning the finiteness of the strong global dimension of algebras and the related problem on the density...

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

Currently displaying 981 – 1000 of 3997