Displaying 1061 – 1080 of 3959

Showing per page

Generalized E-algebras via λ-calculus I

Rüdiger Göbel, Saharon Shelah (2006)

Fundamenta Mathematicae

An R-algebra A is called an E(R)-algebra if the canonical homomorphism from A to the endomorphism algebra E n d R A of the R-module R A , taking any a ∈ A to the right multiplication a r E n d R A by a, is an isomorphism of algebras. In this case R A is called an E(R)-module. There is a proper class of examples constructed in [4]. E(R)-algebras arise naturally in various topics of algebra. So it is not surprising that they were investigated thoroughly in the last decades; see [3, 5, 7, 8, 10, 13, 14, 15, 18, 19]. Despite...

Generalized Higher Derivations on Lie Ideals of Triangular Algebras

Mohammad Ashraf, Nazia Parveen, Bilal Ahmad Wani (2017)

Communications in Mathematics

Let 𝔄 = 𝒜 be the triangular algebra consisting of unital algebras 𝒜 and over a commutative ring R with identity 1 and be a unital ( 𝒜 , ) -bimodule. An additive subgroup 𝔏 of 𝔄 is said to be a Lie ideal of 𝔄 if [ 𝔏 , 𝔄 ] 𝔏 . A non-central square closed Lie ideal 𝔏 of 𝔄 is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on 𝔄 , every generalized Jordan triple higher derivation of 𝔏 into 𝔄 is a generalized higher derivation of 𝔏 into 𝔄 .

Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras

Asia Majieed, Jiren Zhou (2010)

Czechoslovak Mathematical Journal

In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30 (2006), 403–411). We show that if 𝒰 is a triangular algebra, then every generalized Jordan derivation of above type from 𝒰 into itself is a generalized derivation.

Generalized n -coherence

Josef Jirásko (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper necessary and sufficient conditions for large subdirect products of n -flat modules from the category G e n ( Q ) to be n -flat are given.

Generalized quivers associated to reductive groups

Harm Derksen, Jerzy Weyman (2002)

Colloquium Mathematicae

We generalize the definition of quiver representation to arbitrary reductive groups. The classical definition corresponds to the general linear group. We also show that for classical groups our definition gives symplectic and orthogonal representations of quivers with involution inverting the direction of arrows.

Currently displaying 1061 – 1080 of 3959