The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe the structure of finite-dimensional self-injective algebras of finite representation type over a field whose stable Auslander-Reiten quiver has a sectional module not lying on a short chain.
We give a complete description of all finite-dimensional selfinjective algebras over an algebraically closed field whose component quiver has no short cycles.
Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.
Let F: R → R/G be a Galois covering and (resp. ) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories and is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
Assume that k is a field of characteristic different from 2. We show that if Γ is a strongly simply connected k-algebra of non-polynomial growth, then there exists a special family of pointed Γ-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that Γ admits a super-decomposable pure-injective module if k is a countable field.
We prove that the number of terms in the middle of an almost split sequence in the module category of a cycle-finite artin algebra is bounded by 5.
Associative algebras of fixed dimension over algebraically closed fields of fixed characteristic are considered. It is proved that the class of algebras of tame representation type is axiomatizable. Moreover, finite axiomatizability of this class is equivalent to the conjecture that the algebras of tame representation type form a Zariski-open subset in the variety of algebras.
The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.
For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if is a tilting module and , then T(A) is tame if and only if T(B) is tame.
The aim of this note is to give an affirmative answer to a problem raised in [9] by J. Nehring and A. Skowroński, concerning the number of nonstable ℙ₁(K)-families of quasi-tubes in the Auslander-Reiten quivers of the trivial extensions of tubular algebras over algebraically closed fields K.
We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.
Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module...
Let be the ring of p-adic integers, the unit group of and a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over with a 2-cocycle . We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module W.
Let k be a field of characteristic different from 2. We consider two important tame non-polynomial growth algebras: the incidence k-algebra of the garland 𝒢₃ of length 3 and the incidence k-algebra of the enlargement of the Nazarova-Zavadskij poset 𝒩 𝓩 by a greatest element. We show that if Λ is one of these algebras, then there exists a special family of pointed Λ-modules, called an independent pair of dense chains of pointed modules. Hence, by a result of Ziegler, Λ admits a super-decomposable...
Currently displaying 21 –
40 of
42