Displaying 161 – 180 of 260

Showing per page

Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple

Michel Brion (1983)

Annales de l'institut Fourier

Soit G un groupe algébrique semi-simple complexe, U un sous-groupe unipotent maximal de G , T un tore maximal de G normalisant U . Si V est un G -module rationnel de dimension finie, alors G opère sur l’algèbre C [ V ] des fonctions polynomiales sur V ; la structure de G -module de C [ V ] est décrite par la T -algèbre C [ V ] U des U -invariants de C [ V ] . Cette algèbre est de type fini et multigraduée (par le degré de C [ V ] et le poids par rapport à T ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....

Invariants for the modular cyclic group of prime order via classical invariant theory

David L. Wehlau (2013)

Journal of the European Mathematical Society

Let 𝔽 be any field of characteristic p . It is well-known that there are exactly p inequivalent indecomposable representations V 1 , V 2 , ... , V p of C p defined over 𝔽 . Thus if V is any finite dimensional C p -representation there are non-negative integers 0 n 1 , n 2 , ... , n k p - 1 such that V i = 1 k V n i + 1 . It is also well-known there is a unique (up to equivalence) d + 1 dimensional irreducible complex representation of S L 2 ( ) given by its action on the space R d of d forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring...

Invariants of finite groups generated by generalized transvections in the modular case

Xiang Han, Jizhu Nan, Chander K. Gupta (2017)

Czechoslovak Mathematical Journal

We investigate the invariant rings of two classes of finite groups G GL ( n , F q ) which are generated by a number of generalized transvections with an invariant subspace H over a finite field F q in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with...

Invariants of four subspaces

Gerry W. Schwarz, David L. Wehlau (1998)

Annales de l'institut Fourier

We consider problems in invariant theory related to the classification of four vector subspaces of an n -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.

Invariants of the half-liberated orthogonal group

Teodor Banica, Roland Vergnioux (2010)

Annales de l’institut Fourier

The half-liberated orthogonal group O n * appears as intermediate quantum group between the orthogonal group O n , and its free version O n + . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between O n * and U n , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...

Invariants, torsion indices and oriented cohomology of complete flags

Baptiste Calmès, Viktor Petrov, Kirill Zainoulline (2013)

Annales scientifiques de l'École Normale Supérieure

Let  G be a split semisimple linear algebraic group over a field and let  T be a split maximal torus of  G . Let  𝗁 be an oriented cohomology (algebraic cobordism, connective K -theory, Chow groups, Grothendieck’s K 0 , etc.) with formal group law F . We construct a ring from F and the characters of  T , that we call a formal group ring, and we define a characteristic ring morphism c from this formal group ring to  𝗁 ( G / B ) where G / B is the variety of Borel subgroups of  G . Our main result says that when the torsion index...

Currently displaying 161 – 180 of 260