Displaying 821 – 840 of 6204

Showing per page

Bounds of the roots of the real polynomial

Imrich Komara (1987)

Aplikace matematiky

An algorithm for the calculation of a lower bound of the absolute values of the roots of a real algebraic polynomial, of an arbitrary degree, is derived. An example is given to compare the bounds calculated by the method proposed and by other methods.

Brownian motion and generalized analytic and inner functions

Alain Bernard, Eddy A. Campbell, A. M. Davie (1979)

Annales de l'institut Fourier

Let f be a mapping from an open set in R p into R q , with p > q . To say that f preserves Brownian motion, up to a random change of clock, means that f is harmonic and that its tangent linear mapping in proportional to a co-isometry. In the case p = 2 , q = 2 , such conditions signify that f corresponds to an analytic function of one complex variable. We study, essentially that case p = 3 , q = 2 , in which we prove in particular that such a mapping cannot be “inner” if it is not trivial. A similar result for p = 4 , q = 2 would solve...

Calderón's problem for Lipschitz classes and the dimension of quasicircles.

Kari Astala (1988)

Revista Matemática Iberoamericana

In the last years the mapping properties of the Cauchy integralCΓf(z) = 1/(2πi) ∫Γ [f(ξ) / ξ - z] dξhave been widely studied. The most important question in this area was Calderón's problem, to determine those rectifiable Jordan curves Γ for which CΓ defines a bounded operator on L2(Γ). The question was solved by Guy David [Da] who proved that CΓ is bounded on L2(Γ) (or on Lp(Γ), 1 < p < ∞) if and only if Γ is regular, i.e.,H1(Γ ∩ B(z0,R) ≤ CRfor every z0 ∈ C, R > 0 and for...

Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen

Mahan Mj (2009/2010)

Séminaire de théorie spectrale et géométrie

The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.

Canonical bases for 𝔰𝔩 ( 2 , ) -modules of spherical monogenics in dimension 3

Roman Lávička (2010)

Archivum Mathematicum

Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as 𝔰𝔩 ( 2 , ) -modules. As finite-dimensional irreducible 𝔰𝔩 ( 2 , ) -modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.

Currently displaying 821 – 840 of 6204