The Finnish-Polish-Ukrainian Summer School in Complex Analysis. Opening address
This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation where ,
The full automorphism group of the Kulkarni surface is explicitly determined. It is employed to give three defining equations of the Kulkarni surface; each equation exhibits a symmetry of the surface as complex conjugation.
Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose is a sequence of distinct positive numbers. Then is dense in C[0,1] if and only if . Moreover, if , then every function from the C[0,1] closure of can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an earlier result...
We present a solution to the (strict) Bernstein-Nachbin approximation problem in the general complex case. As a corollary, we get proofs of the analytic, the quasi-analytic, and the bounded criteria for localizability in the general complex case. This generalizes the known results of the real or self-adjoint complex cases, in the same way that Bishop’s Theorem generalizes the Weierstrass-Stone Theorem. However, even in the real or self-adjoint complex cases, the results that we obtain are stronger...
The principal goal of this paper is to show that the various sufficient conditions for a real entire function, φ(x), to belong to the Laguerre-Pólya class (Definition 1.1), expressed in terms of Laguerre-type inequalities, do not require the a priori assumptions about the order and type of φ(x). The proof of the main theorem (Theorem 2.3) involving the generalized real Laguerre inequalities, is based on a beautiful geometric result, the Borel-Carathédodory Inequality (Theorem 2.1), and on a deep...
The aim of this paper is to obtain a generalization of W. A. Woyczyński and B. Ram results concerning integrability of power series in terms of their coefficients for the class GM of general monotonic sequences.
Let be a positive Borel measure on the complex plane and let with . We study the generalized Toeplitz operators on the Fock space . We prove that is bounded (or compact) on if and only if is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for to be in the Schatten -class for .
The goal of this paper is to analyse the asymptotic behaviour of the cycle process and the total number of cycles of weighted and generalized weighted random permutations which are relevant models in physics and which extend the Ewens measure. We combine tools from combinatorics and complex analysis (e.g. singularity analysis of generating functions) to prove that under some analytic conditions (on relevant generating functions) the cycle process converges to a vector of independent Poisson variables...