The search session has expired. Please query the service again.
Displaying 1261 –
1280 of
1784
On étudie les singularités et l’intégrabilité d’une classe de fonctions
plurisousharmoniques sur une variété analytique de dimension . Pour étudier
ce problème, nous commençons par contrôler les nombres de Lelong de certains types de
fonctions plurisousharmoniques . Ensuite, nous étudions les singularités du
transformé strict du courant par un éclatement de au dessus d’un point.
Nous répondons ainsi positivement au problème d’intégrabilité locale de , lorsque , et lorsque est une fonction
plurisousharmonique...
2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.A challenging conjecture of Stephen Smale on geometry of
polynomials is under discussion. We consider an interpretation which turns
out to be an interesting problem on equilibrium of an electrostatic field that
obeys the law of the logarithmic potential. This interplay allows us to study
the quantities that appear in Smale’s conjecture for polynomials whose zeros
belong to certain specific regions. A conjecture concerning the electrostatic
equilibrium...
This paper examines when it is possible to find a smooth potential on a C1 domain D with prescribed normal derivatives at the boundary. It is shown that this is always possible when D is a Liapunov-Dini domain, and this restriction on D is essential. An application concerning C1 superharmonic extension is given.
Let E be a compact set in the complex plane, be the Green function of the unbounded component of with pole at infinity and where the supremum is taken over all polynomials of degree at most n, and . The paper deals with recent results concerning a connection between the smoothness of (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence . Some additional conditions are given for special classes of sets.
We consider a compact set K ⊂ ℝ in the form of the union of a sequence of segments. By means of nearly Chebyshev polynomials for K, the modulus of continuity of the Green functions is estimated. Markov’s constants of the corresponding set are evaluated.
We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.
Our aim is to establish Sobolev type inequalities for fractional maximal functions and Riesz potentials in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents , where and satisfy log-Hölder conditions, for , and is nonnegative and Hölder continuous of order .
Currently displaying 1261 –
1280 of
1784