Univalent harmonic exterior mappings as solutions of an optimization problem
Let a < 0, Ω = ℂ -(-∞, a] and U = z: |z| < 1. We consider the class of functions f which are univalent, harmonic and sense preserving with f(U) = Ω and satisfy f(0) = 0, and . We describe the closure of and determine the extreme points of .
Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, and .
We prove universal overconvergence phenomena for harmonic functions on the real hyperbolic space.
A holomorphic function on a simply connected domain is said to possess a universal Taylor series about a point in if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta outside (provided only that has connected complement). This paper shows that this property is not conformally invariant, and, in the case where is the unit disc, that such functions have extreme angular boundary behaviour.
The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in , having the Riesz masses on a ray.
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.
Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions...
Some results of Bourgain on the radial variation of harmonic functions in the disk are extended to the setting of harmonic functions in upper half-spaces.
We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.
Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.