Displaying 321 – 340 of 455

Showing per page

The versality discriminant and local topological equivalence of mappings

James Damon (1990)

Annales de l'institut Fourier

We will extend the infinitesimal criteria for the equisingularity (i.e. topological triviality) of deformations f of germs of mappings f 0 : k s , 0 k t , 0 to non-finitely determined germs (these occur generically outside the “nice dimensions” for Mather, even among topologically stable mappings). The failure of finite determinacy is described geometrically by the “versality discriminant”, which is the set of points where f 0 is not stable (i.e. viewed as an unfolding it is not versal). The criterion asserts that...

The ¯ -Neumann operator and commutators of the Bergman projection and multiplication operators

Friedrich Haslinger (2008)

Czechoslovak Mathematical Journal

We prove that compactness of the canonical solution operator to ¯ restricted to ( 0 , 1 ) -forms with holomorphic coefficients is equivalent to compactness of the commutator [ 𝒫 , M ¯ ] defined on the whole L ( 0 , 1 ) 2 ( Ω ) , where M ¯ is the multiplication by z ¯ and 𝒫 is the orthogonal projection of L ( 0 , 1 ) 2 ( Ω ) to the subspace of ( 0 , 1 ) forms with holomorphic coefficients. Further we derive a formula for the ¯ -Neumann operator restricted to ( 0 , 1 ) forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications...

The ¯ -Neumann operator on Lipschitz q -pseudoconvex domains

Sayed Saber (2011)

Czechoslovak Mathematical Journal

On a bounded q -pseudoconvex domain Ω in n with a Lipschitz boundary, we prove that the ¯ -Neumann operator N satisfies a subelliptic ( 1 / 2 ) -estimate on Ω and N can be extended as a bounded operator from Sobolev ( - 1 / 2 ) -spaces to Sobolev ( 1 / 2 ) -spaces.

Théorème de division et stabilité en géométrie analytique locale

André Galligo (1979)

Annales de l'institut Fourier

À l’aide d’un théorème de division de séries entières convergentes avec estimation des normes sur un système fondamental de polydisques, on démontre un théorème de “passage du formel au convergent”. Ceci nous permet d’étudier les morphismes stables et plats entre germes d’espaces analytiques singuliers.

Théorème de Hilbert-Samuel «arithmétique»

Ahmed Abbes, Thierry Bouche (1995)

Annales de l'institut Fourier

On donne une nouvelle démonstration directe du théorème de Hilbert-Samuel arithmétique et on déduit un critère numérique pour l’existence de sections d’un fibré en droite sur une variété arithmétique de norme sup inférieure à un.

Théorème de préparation pour les fonctions logarithmico-exponentielles

Jean-Marie Lion, Jean-Philippe Rolin (1997)

Annales de l'institut Fourier

Nous donnons une preuve géométrique du théorème d’élimination des quantificateurs pour les fonctions logarithmico-exponentielles prouvé initialement par van den Dries, Macintyre et Marker. Notre démonstration n’utilise pas de Théorie des Modèles. Elle repose sur un théorème de préparation pour les fonctions sous-analytiques.

Théorèmes d’annulation pour des fibrés munis d’une forme non dégénérée

Pierre-Emmanuel Chaput (2005)

Bulletin de la Société Mathématique de France

Je démontre des théorèmes d’annulation de la cohomologie de Dolbeault de fibrés vectoriels amples sur une variété projective lisse, munis d’une forme symplectique ou d’une forme quadratique non-dégénérée à valeurs dans un fibré en droites. L’hypothèse d’existence d’une telle forme permet d’améliorer les résultats similaires précédents. Je fais aussi des remarques sur la cohomologie des fibrés en droites sur les grassmanniennes isotropes.

Théorèmes de finitude pour les variétés pfaffiennes

Robert Moussu, Claude Roche (1992)

Annales de l'institut Fourier

On introduit, dans ce travail, une hypothèse sur le spiralement d’une feuille d’un feuilletage analytique réel de codimension un (hypersurface pfaffienne). On en tire des résultats très généraux de finitude du type de Khovanskii. Des exemples précis montrent la généralité de ces hypersurfaces pfaffiennes. Une description complété des bouts de telles variétés en dimension trois est donnée.

Théorèmes de préparation Gevrey et étude de certaines applications formelles

Augustin Mouze (2003)

Annales Polonici Mathematici

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps F from s to p without constant term such that the rank of the Jacobian matrix of F is equal to 1. Let be a formal power series. If F is a holomorphic map, the following result is well known: ∘ F is analytic implies there exists a convergent power series...

Currently displaying 321 – 340 of 455