Sur les diviseurs non-polaires d'un espace analytique compact.
Dans cet article, je montre qu’un domaine est hyperbolique pour la pseudodistance intégrée de Carathéodory (c’est-à-dire que est une distance sur ) si et seulement si la pseudodistance de Carathéodory vérifie la propriété de séparation faible suivante : tout point de possède un voisinage tel que, pour tout point de , , . Je construis aussi un exemple d’un domaine -hyperbolique et non -hyperbolique.
On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...
An example of a finite dimensional analytic space is exhibited, for which the Carathéodory integrated distance and the Carathéodory distance, although defining the same topology, are respectively complete and incomplete.
On étudie les espaces de Stein quasi-compacts (i.e. vérifiant pour tout et tout faisceau cohérent sur ). On établit un critère simple pour qu’un espace soit de Stein et on en déduit quelques conséquences.
Let F be a codimension one holomorphic foliation whose singular set Σ is contained in a compact leaf S of F.When F is of dimension one, Σ is a set of isolated points {q1, ..., qr}, C. Camacho and P. Sad define the index of F at each point qk and prove that the sum of these indices equals the Euler class c1(E) of the fibre bundle E normal to S.Generally, whenever Σ is of any dimension m, we can define a such index iα along the maximal dimension strates {Σα} of a suitable stratification of the complex...
Dans cet article nous étudions les feuilletages holomorphes réduits en dimension complexe 2. Plus précisément, nous caractérisons par leur espace de module analytique, ceux qui sont transversalement projectifs en dehors d'un sous-ensemble analytique propre. Ceci entraî ne que cette classe de feuilletages est obtenue par pull-back d'équations de Riccati. Nous montrons enfin que cette dernière propriété peut être mise en défaut dans le cas non réduit.
Dans notre article [6] nous avons construit, pour une classe assez large de germes de fonctions holomorphes à lieu singulier de dimension 1 des invariants analytiques qui généralisent le réseau de Brieskorn d’un germe à singularité isolée. Dans cet article nous montrons que les résultats que nous avions obtenus s’étendent àtous les germes à lieu singulier de dimension 1 sans autre restriction. Ces invariants, essentiellement donnés par des (a,b)-modules géométriques, (objet qui est une abstraction...