Displaying 1481 – 1500 of 5576

Showing per page

Equidistribution estimates for Fekete points on complex manifolds

Nir Lev, Joaquim Ortega-Cerdà (2016)

Journal of the European Mathematical Society

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich–Wasserstein distance of the Fekete points...

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

Équidistribution vers le courant de Green

Frédéric Protin (2015)

Annales Polonici Mathematici

We establish an equidistribution result for the pull-back of a (1,1)-closed positive current in ℂ² by a proper polynomial map of small topological degree. We also study convergence at infinity on good compactifications of ℂ². We make use of a lemma that enables us to control the blow-up of some integrals in the neighborhood of a big logarithmic singularity of a plurisubharmonic function. Finally, we discuss the importance of the properness hypothesis, and we give some results in the case where this...

Equilibrium measures for holomorphic endomorphisms of complex projective spaces

Mariusz Urbański, Anna Zdunik (2013)

Fundamenta Mathematicae

Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space k , k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number κ f > 0 such that if ϕ: J → ℝ is a Hölder continuous function with s u p ( ϕ ) - i n f ( ϕ ) < κ f , then ϕ admits a unique equilibrium state μ ϕ on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system ( f , μ ϕ ) is K-mixing, whence ergodic. Proving...

Equimultiple Locus of Embedded Algebroid Surfaces and Blowing–up in Characteristic Zero

Piedra-Sánchez, R., Tornero, J. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 14B05, 32S25.The smooth equimultiple locus of embedded algebroid surfaces appears naturally in many resolution processes, both classical and modern. In this paper we explore how it changes by blowing–up.* Supported by FQM 304 and BFM 2000–1523. ** Supported by FQM 218 and BFM 2001–3207.

Equisingular generic discriminants and Whitney conditions

Eric Dago Akéké (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this article is to show that the Whitney conditions are satisfied for complex analytic families of normal surface singularities for which the generic discriminants are equisingular. According to J. Briançon and J. P. Speder the constancy of the topological type of a family of surface singularities does not imply Whitney conditions in general. We will see here that for a family of minimal normal surface singularities these two equisingularity conditions are equivalent.

Équisingularité réelle II : invariants locaux et conditions de régularité

Georges Comte, Michel Merle (2008)

Annales scientifiques de l'École Normale Supérieure

On définit, pour un germe d’ensemble sous-analytique, deux nouvelles suites finies d’invariants numériques. La première a pour termes les localisations des courbures de Lipschitz-Killing classiques, la seconde est l’équivalent réel des caractéristiques évanescentes complexes introduites par M. Kashiwara. On montre que chaque terme d’une de ces suites est combinaison linéaire des termes de l’autre, puis on relie ces invariants à la géométrie des discriminants des projections du germe sur des plans...

Equivalence of analytic and rational functions

J. Bochnak, M. Buchner, W. Kucharz (1997)

Annales Polonici Mathematici

We give a criterion for a real-analytic function defined on a compact nonsingular real algebraic set to be analytically equivalent to a rational function.

Currently displaying 1481 – 1500 of 5576