The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 108

Showing per page

A function related to a Lagrange-Bürmann series

Paul Bracken (2002)

Czechoslovak Mathematical Journal

An infinite series which arises in certain applications of the Lagrange-Bürmann formula to exponential functions is investigated. Several very exact estimates for the Laplace transform and higher moments of this function are developed.

A lower bound on the radius of analyticity of a power series in a real Banach space

Timothy Nguyen (2009)

Studia Mathematica

Let F be a power series centered at the origin in a real Banach space with radius of uniform convergence ϱ. We show that F is analytic in the open ball B of radius ϱ/√e, and furthermore, the Taylor series of F about any point a ∈ B converges uniformly within every closed ball centered at a contained in B.

Accelero-summation of the formal solutions of nonlinear difference equations

Geertrui Klara Immink (2011)

Annales de l’institut Fourier

In 1996, Braaksma and Faber established the multi-summability, on suitable multi-intervals, of formal power series solutions of locally analytic, nonlinear difference equations, in the absence of “level 1 + ”. Combining their approach, which is based on the study of corresponding convolution equations, with recent results on the existence of flat (quasi-function) solutions in a particular type of domains, we prove that, under very general conditions, the formal solution is accelero-summable. Its sum...

An elementary proof of the Briançon-Skoda theorem

Jacob Sznajdman (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function φ belongs to an ideal I of the ring of germs of analytic functions at 0 n ; more precisely, the ideal membership is obtained if a function associated with φ and I is locally square integrable. If I can be generated by m elements,it follows in particular that I min ( m , n ) ¯ I , where J ¯ denotes the integral closure of an ideal J .

Approximation de fonctions holomorphes d'un nombre infini de variables

László Lempert (1999)

Annales de l'institut Fourier

Soit X un espace de Banach complexe, et notons B ( R ) X la boule de rayon R centrée en 0 . On considère le problème d’approximation suivant: étant donnés 0 < r < R , ϵ > 0 et une fonction f holomorphe dans B ( R ) , existe-t-il toujours une fonction g , holomorphe dans X , telle que | f - g | < ϵ sur B ( r ) ? On démontre que c’est bien le cas si X est l’espace l 1 des suites sommables.

Approximation of holomorphic functions of infinitely many variables II

László Lempert (2000)

Annales de l'institut Fourier

Let X be a Banach space and B ( R ) X the ball of radius R centered at 0 . Can any holomorphic function on B ( R ) be approximated by entire functions, uniformly on smaller balls B ( r ) ? We answer this question in the affirmative for a large class of Banach spaces.

Diagonal series of rational functions (several variables)

Sławomir Cynk, Piotr Tworzewski (1994)

Annales Polonici Mathematici

We give representations of Nash functions in a neighbourhood of a polydisc (torus) in m as diagonal series of rational functions in a neighbourhood of a polydisc (torus) in m + 1 .

Currently displaying 1 – 20 of 108

Page 1 Next