The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a constructive proof of the fact that the set of algebraic Pfaff equations without algebraic solutions over the complex projective plane is dense in the set of all algebraic Pfaff equations of a given degree.
Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection...
We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of .
In this paper we prove that holomorphic codimension one singular foliations on have no non trivial minimal sets. We prove also that for , there is no real analytic Levi flat hypersurface in .
Here we show that a Kupka component of a codimension 1 singular foliation of with not a square is a complete intersection. The result implies the existence of a meromorphic first integral of .
Here we show that a Kupka component of a codimension 1 singular foliation of is a complete intersection. The result implies the existence of a meromorphic first integral of . The result was previously known if was assumed to be not a square.
The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singularity in the projective space of dimension two. Also we calculate higher Melnikov functions under some...
The aim of this note is to give a clearer and more direct proof of the main result of another paper of the author. Moreover, we give some complementary results related to R-complete algebraic foliations with R a rational function of type ℂ*.
Let be a germ of a complete intersection variety in , , having an isolated singularity at and be the germ of a holomorphic vector field having an isolated zero at and tangent to . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of is also isolated in the ambient space we give a formula for the homological index in terms of local linear algebra.
We study hypersurfaces of complex projective manifolds which are invariant by a foliation, or more generally which are solutions to a Pfaff equation. We bound their degree using classical results on logarithmic forms.
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
On construit un transport transverse aux fibres d’une fonction multivaluée de type ( complexes), à l’origine de . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.
We show the existence of weak logarithmic models for any (dicritical or not) holomorphic foliation F of (C2,0) without saddle-nodes in its desingularization. The models are written in terms of a representative set of separatrices, whose equisingularity types are controlled by the Milnor number of the foliation.
The object of this work is to generalize to the germs of Pfaffian logarithmic forms, the two equivalent descriptions of the J. Milnor’s fibre that is wellknown for the germs of holomorphic functions.
Currently displaying 1 –
20 of
103