Some critical point theorems and applications to semilinear elliptic partial differential equations
This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012).We address the decay rates of the energy of the damped wave equation when the damping coefficient does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We prove that the observability of the Schrödinger group implies that...
In this paper we want to show how well-known results from the theory of (regular) elliptic boundary value problems, function spaces and interpolation, subordination in the sense of Bochner and Dirichlet forms can be combined and how one can thus get some new aspects in each of these fields.
Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...
Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...
The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.
Let be a Schrödinger operator and let be a Schrödinger type operator on , where is a nonnegative potential belonging to certain reverse Hölder class...