Displaying 741 – 760 of 1411

Showing per page

Multiplicity results for the prescribed scalar curvature on low spheres

Mohamed Ben Ayed, Mohameden Ould Ahmedou (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres 𝕊 3 , 𝕊 4 . Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence...

Multiscale modelling of sound propagation through the lung parenchyma

Paul Cazeaux, Jan S. Hesthaven (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective...

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

Neumann problem for one-dimensional nonlinear thermoelasticity

Yoshihiro Shibata (1992)

Banach Center Publications

The global existence theorem of classical solutions for one-dimensional nonlinear thermoelasticity is proved for small and smooth initial data in the case of a bounded reference configuration for a homogeneous medium, considering the Neumann type boundary conditions: traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.

New regularity results for a generic model equation in exterior 3D domains

Stanislav Kračmar, Patrick Penel (2005)

Banach Center Publications

We consider a generic scalar model for the Oseen equations in an exterior three-dimensional domain. We assume the case of a non-constant coefficient function. Using a variational approach we prove new regularity properties of a weak solution whose existence and uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some facts and technical tools proved in the above mentioned paper, we give also a brief review of its results and methods.

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g ( x , t ) . We assume that g ( x , t ) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g ( x , t ) is a quasiperiodic function with respect to t , then the attractor is a continuous image of a torus. Moreover the...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g(x,t). We assume that g(x,t) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g(x,t) is a quasiperiodic function with respect to t, then the attractor is a continuous image...

Non-generic blow-up solutions for the critical focusing NLS in 1-D

Joachim Krieger, Wilhelm Schlag (2009)

Journal of the European Mathematical Society

We consider the L 2 -critical focusing non-linear Schrödinger equation in 1 + 1 -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.

Nonisothermal systems of self-attracting Fermi-Dirac particles

Piotr Biler, Tadeusz Nadzieja, Robert Stańczy (2004)

Banach Center Publications

The existence of stationary solutions and blow up of solutions for a system describing the interaction of gravitationally attracting particles that obey the Fermi-Dirac statistics are studied.

Nonlinear boundary value problems describing mobile carrier transport in semiconductor devices

E. Z. Borevich, V. M. Chistyakov (2001)

Applications of Mathematics

The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study existence and approximation of non-negative solutions of partial differential equations of the type t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where F is a convex function linked to f by f ( u ) = u F ' ( u ) - F ( u ) , we show that u is the “gradient flow” of φ with respect to the 2-Wasserstein distance between probability measures on the space...

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where F is a convex function linked to f by f ( u ) = u F ' ( u ) - F ( u ) , we show that u is the “gradient flow” of ϕ with respect to the 2-Wasserstein distance between probability measures on the space...

Currently displaying 741 – 760 of 1411