Displaying 181 – 200 of 1236

Showing per page

Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter

Michael S. Vogelius, Darko Volkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider solutions to the time-harmonic Maxwell's Equations of a TE (transverse electric) nature. For such solutions we provide a rigorous derivation of the leading order boundary perturbations resulting from the presence of a finite number of interior inhomogeneities of small diameter. We expect that these formulas will form the basis for very effective computational identification algorithms, aimed at determining information about the inhomogeneities from electromagnetic boundary measurements. ...

Asymptotic models for scattering from unbounded media with high conductivity

Houssem Haddar, Armin Lechleiter (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...

Asymptotics for quasilinear elliptic non-positone problems

Zuodong Yang, Qishao Lu (2002)

Annales Polonici Mathematici

In the recent years, many results have been established on positive solutions for boundary value problems of the form - d i v ( | u ( x ) | p - 2 u ( x ) ) = λ f ( u ( x ) ) in Ω, u(x)=0 on ∂Ω, where λ > 0, Ω is a bounded smooth domain and f(s) ≥ 0 for s ≥ 0. In this paper, a priori estimates of positive radial solutions are presented when N > p > 1, Ω is an N-ball or an annulus and f ∈ C¹(0,∞) ∪ C⁰([0,∞)) with f(0) < 0 (non-positone).

Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements

Josef Dalík, Václav Valenta (2013)

Open Mathematics

An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x 1, x 2) at the vertices of a regular triangulation T h composed both of rectangles and triangles is presented. The method assumes that only the interpolant Πh[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from T h is known. A complete analysis of this method is an extension of the complete analysis concerning the finite...

Currently displaying 181 – 200 of 1236