The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper is concerned with the generalization of the finite element method via the use of non-polynomial enrichment functions. Several methods employ this general approach, e.g. the extended finite element method and the generalized finite element method. We review these approaches and interpret them in the more general framework of the partition of unity method. Here we focus on fundamental construction principles, approximation properties and stability of the respective numerical method. To...
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that...
The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by...
We derive a posteriori error estimates for singularly
perturbed reaction–diffusion problems which yield a guaranteed
upper bound on the discretization error and are fully and easily
computable. Moreover, they are also locally efficient and robust in
the sense that they represent local lower bounds for the actual
error, up to a generic constant independent in particular of the
reaction coefficient. We present our results in the framework of
the vertex-centered finite volume method but their nature...
Currently displaying 1 –
12 of
12