The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
 
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal. 
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration , gradient of concentration  and the chemical potential . The existence is shown using a newly developed generalization of gradient...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider a system 
of degenerate parabolic equations modelling a 
thin film, consisting of two layers of immiscible Newtonian liquids, on
a solid horizontal substrate. 
In addition, the model includes the presence of insoluble surfactants on
both the free liquid-liquid and liquid-air interfaces,
and the presence of both attractive and repulsive van der Waals forces
in terms of the heights of the two layers. 
We show that this system formally satisfies a Lyapunov structure,
and a second energy...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper is concerned with a fourth-order parabolic equation which models epitaxial growth of nanoscale thin films. Based on the regularity estimates for semigroups and the classical existence theorem of global attractors, we prove that the fourth order parabolic equation possesses a global attractor in a subspace of H², which attracts all the bounded sets of H² in the H²-norm.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper is concerned with the convective Cahn-Hilliard equation. We use a classical theorem on existence of a global attractor to derive that the convective Cahn-Hilliard equation possesses a global attractor on some subset of H².
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider the convective Cahn-Hilliard equation with periodic boundary conditions. Based on the iteration technique for regularity estimates and the classical theorem on existence of a global attractor, we prove that the convective Cahn-Hilliard equation has a global attractor in .
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
L'esistenza di attrattori globali per equazioni paraboliche semilineari è stata estensivamente studiata da molti autori mentre il caso quasilineare è stato meno considerato e ancora esistono molti problemi aperti. L'obiettivo di questo lavoro è di studiare, da un punto di vista astratto, l'esistenza di attrattori globali per equazioni paraboliche quasilineari con parte principale monotona. I risultati ottenuti vengono applicati a problemi parabolici degeneri del secondo ordine e di ordine superiore....
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Global solutions of semilinear parabolic equations are studied in the case when some weak a priori estimate for solutions of the problem under consideration is already known. The focus is on the rapid growth of the nonlinear term for which existence of the semigroup and certain dynamic properties of the considered system can be justified. Examples including the famous Cahn-Hilliard equation are finally discussed.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 21 – 
                                        40 of 
                                        88