The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
363
2000 Mathematics Subject Classification: 35P25, 81U20, 35S30, 47A10, 35B38.We study the microlocal structure of the resolvent of the semiclassical Schrödinger operator with short range potential at an energy which is a unique non-degenerate global maximum of the potential. We prove that it is a semiclassical Fourier integral operator quantizing the incoming and outgoing Lagrangian submanifolds associated to the fixed hyperbolic point. We then discuss two applications of this result to describing...
We consider the 3D Schrödinger operator where , is a magnetic potential generating a constant magneticfield of strength , and is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of as the poles of this meromorphic extension. We study their distribution near any fixed...
Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances et convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, est un symbole analytique d’ordre 0 en la variable dont on donne le premier terme du développement. Nous construisons pour cela des quasimodes...
On considère le problème de Dirichlet à l’éxtérieur d’un obstacle strictement convexe borné à bord . Sous une hypothèse sur la variation de la courbure, on obtient à un facteur près, le nombre de résonances de module , associées à la première racine de la fonction d’Airy.
In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.
These notes summarize the papers [8, 9] on the analysis of resolvent, Eisenstein series and scattering operator for geometrically finite hyperbolic quotients with rational non-maximal rank cusps. They complete somehow the talk given at the PDE seminar of Ecole Polytechnique in october 2005.
We study the stability of self-similar solutions of the binormal flow, which is a model for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions form a family of evolving regular curves in that develop a singularity in finite time, indexed by a parameter . We consider curves that are small regular perturbations of for a fixed time . In particular, their curvature is not vanishing at infinity, so we are not in the context of known results of local existence...
Currently displaying 181 –
200 of
363