The search session has expired. Please query the service again.

Displaying 3361 – 3380 of 4762

Showing per page

Pseudo orbit tracing property and fixed points

Masatoshi Oka (1996)

Annales Polonici Mathematici

If a continuous map f of a compact metric space has the pseudo orbit tracing property and is h-expansive then the set of all fixed points of f is totally disconnected.

Puiseux series polynomial dynamics and iteration of complex cubic polynomials

Jan Kiwi (2006)

Annales de l’institut Fourier

We let 𝕃 be the completion of the field of formal Puiseux series and study polynomials with coefficients in 𝕃 as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in 𝕃 [ ζ ] . We show that cubic polynomial dynamics over 𝕃 and are intimately related. More precisely, we establish that some elements of 𝕃 naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal...

Pullback attractors for non-autonomous 2D MHD equations on some unbounded domains

Cung The Anh, Dang Thanh Son (2015)

Annales Polonici Mathematici

We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal...

Pullback incremental attraction

Peter E. Kloeden, Thomas Lorenz (2014)

Nonautonomous Dynamical Systems

A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.

Pull-back of currents by meromorphic maps

Tuyen Trung Truong (2013)

Bulletin de la Société Mathématique de France

Let  X and Y be compact Kähler manifolds, and let  f : X Y be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator f for currents of bidegrees ( p , p ) of finite order on  Y (and thus foranycurrent, since Y is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can...

Pulling back cohomology classes and dynamical degrees of monomial maps

Jan-Li Lin (2012)

Bulletin de la Société Mathématique de France

We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.

Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps

Jérôme Buzzi (2010)

Annales de l’institut Fourier

Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...

Currently displaying 3361 – 3380 of 4762