Pseudo orbit tracing property and fixed points
If a continuous map f of a compact metric space has the pseudo orbit tracing property and is h-expansive then the set of all fixed points of f is totally disconnected.
If a continuous map f of a compact metric space has the pseudo orbit tracing property and is h-expansive then the set of all fixed points of f is totally disconnected.
We let be the completion of the field of formal Puiseux series and study polynomials with coefficients in as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in . We show that cubic polynomial dynamics over and are intimately related. More precisely, we establish that some elements of naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal...
We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal...
A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.
Let and be compact Kähler manifolds, and let be a dominant meromorphic map. Based upon a regularization theorem of Dinh and Sibony for DSH currents, we define a pullback operator for currents of bidegrees of finite order on (and thus foranycurrent, since is compact). This operator has good properties as may be expected. Our definition and results are compatible to those of various previous works of Meo, Russakovskii and Shiffman, Alessandrini and Bassanelli, Dinh and Sibony, and can...
We study the pullback maps on cohomology groups for equivariant rational maps (i.e., monomial maps) on toric varieties. Our method is based on the intersection theory on toric varieties. We use the method to determine the dynamical degrees of monomial maps and compute the degrees of the Cremona involution.
Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...