The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

On biaccessible points in Julia sets of polynomials

Anna Zdunik (2000)

Fundamenta Mathematicae

Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.

On Fatou-Julia decompositions

Taro Asuke (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

We propose a Fatou-Julia decomposition for holomorphic pseudosemigroups. It will be shown that the limit sets of finitely generated Kleinian groups, the Julia sets of mapping iterations and Julia sets of complex codimension-one regular foliations can be seen as particular cases of the decomposition. The decomposition is applied in order to introduce a Fatou-Julia decomposition for singular holomorphic foliations. In the well-studied cases, the decomposition behaves as expected.

On fixed points of holomorphic type

Ewa Ligocka (2002)

Colloquium Mathematicae

We study a linearization of a real-analytic plane map in the neighborhood of its fixed point of holomorphic type. We prove a generalization of the classical Koenig theorem. To do that, we use the well known results concerning the local dynamics of holomorphic mappings in ℂ².

On the spectrum of stochastic perturbations of the shift and Julia sets

el Houcein el Abdalaoui, Ali Messaoudi (2012)

Fundamenta Mathematicae

We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces ( α ( ) ,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².

Currently displaying 1 – 11 of 11

Page 1