The search session has expired. Please query the service again.
Displaying 241 –
260 of
312
On reflexive spaces trigonometrically well-bounded operators have an operator-ergodic-theory characterization as the invertible operators U such that
. (*)
Trigonometrically well-bounded operators permeate many settings of modern analysis, and this note highlights the advances in both their spectral theory and operator ergodic theory made possible by a recent rekindling of interest in the R. C. James inequalities for super-reflexive spaces. When the James inequalities are combined with Young-Stieltjes...
The classical Banach principle is an essential tool for the investigation of ergodic properties of Cesàro subsequences. The aim of this work is to extend the Banach principle to the case of stochastic convergence in operator algebras. We start by establishing a sufficient condition for stochastic convergence (stochastic Banach principle). Then we prove stochastic convergence for bounded Besicovitch sequences, and as a consequence for uniform subsequences.
We show that the set of those Markov semigroups on the Schatten class ₁ such that in the strong operator topology , where Q is a one-dimensional projection, form a meager subset of all Markov semigroups.
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive...
We extend some recent results for regularized semigroups to strongly continuous n-times integrated C-cosine operator functions. Several equivalent conditions for the existence and uniqueness of solutions of (ACP) are also presented.
Let T be a stochastic operator on a σ-finite standard measure space with an equivalent σ-finite infinite subinvariant measure λ. Then T possesses a natural "conservative deterministic factor" Φ which is the Frobenius-Perron operator of an invertible measure preserving transformation φ. Moreover, T is mixing ("sweeping") iff φ is a mixing transformation. Some stronger versions of mixing are also discussed. In particular, a notion of *L¹-s.o.t. mixing is introduced and characterized in terms of weak...
Let T be a positive linear contraction of of a σ-finite measure space (X,Σ,μ) which overlaps supports. In general, T need not be completely mixing, but it is in the following cases: (i) T is the Frobenius-Perron operator of a non-singular transformation ϕ (in which case complete mixing is equivalent to exactness of ϕ). (ii) T is a Harris recurrent operator. (iii) T is a convolution operator on a compact group. (iv) T is a convolution operator on a LCA group.
On donne une condition combinatoire effective suffisante pour que le sytème dynamique
associé à une substitution de type Pisot ait un spectre purement discret. Dans le cas
unimodulaire, cette condition est nécessaire dès que la substitution n'a qu'un cobord
trivial ; elle est vérifiée si et seulement si le fractal de Rauzy associé à la
substitution engendre un pavage auto-similaire et périodique. On en déduit des conditions
de connexité des fractals de Rauzy.
We characterize tauberian operators in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in . As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator is also tauberian, and the induced operator is an isomorphism into. Also, we show that embeds...
Let X be a Banach space and be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.
We study the relations between simetrization by a limiting process of probabilities and functions defined on a metric compacy product space and their ergodic properties.
Currently displaying 241 –
260 of
312