Representation of linear operators on spaces of vector valued functions
We prove that differences of order-continuous operators acting between function spaces can be represented with a pseudo-kernel, proved the underlying measure spaces satisfy certain (rather weak) conditions. To see that part of these conditions are necessary, we show that the strict localizability of a measure space can be characterized by the existence of a pseudo-kernel for a certain operator.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...
We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
Let be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in , Sobolev, and some new Hardy spaces naturally associated to . First, we show that the...
Let be the symmetric operator given by the restriction of to , where is a self-adjoint operator on the Hilbert space and is a linear dense set which is closed with respect to the graph norm on , the operator domain of . We show that any self-adjoint extension of such that can be additively decomposed by the sum , where both the operators and take values in the strong dual of . The operator is the closed extension of to the whole whereas is explicitly written in terms...
An eigenvalue criterion for hypercyclicity due to the first author is improved. As a consequence, some new sufficient conditions for a sequence of infinite order linear differential operators to be hypercyclic on the space of holomorphic functions on certain domains of are shown. Moreover, several necessary conditions are furnished. The equicontinuity of a family of operators as above is also studied, and it is characterized if the domain is . The results obtained extend or improve earlier work...