The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 96

Showing per page

On the spectrum of the operator which is a composition of integration and substitution

Ignat Domanov (2008)

Studia Mathematica

Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator V ϕ : f ( x ) 0 ϕ ( x ) f ( t ) d t be defined on L₂[0,1]. We prove that V ϕ has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator V ϕ always equals 1.

On the weighted estimate of the Bergman projection

Benoît Florent Sehba (2018)

Czechoslovak Mathematical Journal

We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given.

On totally * -paranormal operators

Eungil Ko, Hae-Won Nam, Young Oh Yang (2006)

Czechoslovak Mathematical Journal

In this paper we study some properties of a totally * -paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally * -paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally * -paranormal operators through the local spectral theory. Finally, we show that every totally * -paranormal operator satisfies an analogue of the single valued extension property for W 2 ( D , H ) and some of totally * -paranormal operators have scalar extensions....

On uniformly smoothing stochastic operators

Wojciech Bartoszek (1995)

Commentationes Mathematicae Universitatis Carolinae

We show that a stochastic operator acting on the Banach lattice L 1 ( m ) of all m -integrable functions on ( X , 𝒜 ) is quasi-compact if and only if it is uniformly smoothing (see the definition below).

On Volterra composition operators from Bergman-type space to Bloch-type space

Zhi Jie Jiang (2011)

Czechoslovak Mathematical Journal

Let ϕ be an analytic self-mapping of 𝔻 and g an analytic function on 𝔻 . In this paper we characterize the bounded and compact Volterra composition operators from the Bergman-type space to the Bloch-type space. We also obtain an asymptotical expression of the essential norm of these operators in terms of the symbols g and ϕ .

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications...

Currently displaying 61 – 80 of 96