Displaying 441 – 460 of 681

Showing per page

A-monotone nonlinear relaxed cocoercive variational inclusions

Ram Verma (2007)

Open Mathematics

Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Kieweg, Yuri Iliash, Ronald H. W. Hoppe, Michael Hintermüller (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Hintermüller, Ronald H.W. Hoppe, Yuri Iliash, Michael Kieweg (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An a priori Campanato type regularity condition for local minimisers in the calculus of variations

Thomas J. Dodd (2010)

ESAIM: Control, Optimisation and Calculus of Variations

An a priori Campanato type regularity condition is established for a class of W1X local minimisers u ¯ of the general variational integral Ω F ( u ( x ) ) d x where Ω n is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition F ( ξ ) c ( 1 + | ξ | p ) for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space p , μ ( Ω , N × n ) , µ < n, Campanato space p , n ( Ω , N × n ) and the space of bounded mean oscillation BMO Ω , N × n ) . The admissible maps u : Ω N are of Sobolev class W1,p, satisfying a Dirichlet boundary...

An active set strategy based on the augmented Lagrangian formulation for image restoration

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...

An algorithm for construction of ε-value functions for the Bolza control problem

Edyta Jacewicz (2001)

International Journal of Applied Mathematics and Computer Science

The problem considered is that of approximate numerical minimisation of the non-linear control problem of Bolza. Starting from the classical dynamic programming method of Bellman, an ε-value function is defined as an approximation for the value function being a solution to the Hamilton-Jacobi equation. The paper shows how an ε-value function which maintains suitable properties analogous to the original Hamilton-Jacobi value function can be constructed using a stable numerical algorithm. The paper...

An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin, Peter Maass (2012)

ESAIM: Control, Optimisation and Calculus of Variations

This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov...

An application of the Fourier transform to optimization of continuous 2-D systems

Vitali Dymkou, Michael Dymkov (2003)

International Journal of Applied Mathematics and Computer Science

This paper uses the theory of entire functions to study the linear quadratic optimization problem for a class of continuous 2D systems. We show that in some cases optimal control can be given by an analytical formula. A simple method is also proposed to find an approximate solution with preassigned accuracy. Some application to the 1D optimization problem is presented, too. The obtained results form a theoretical background for the design problem of optimal controllers for relevant processes.

Currently displaying 441 – 460 of 681