Displaying 461 – 480 of 681

Showing per page

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1 , p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach

Fei Yan, Mahjoub Dridi, Abdellah El Moudni (2013)

International Journal of Applied Mathematics and Computer Science

This paper addresses a vehicle sequencing problem for adjacent intersections under the framework of Autonomous Intersection Management (AIM). In the context of AIM, autonomous vehicles are considered to be independent individuals and the traffic control aims at deciding on an efficient vehicle passing sequence. Since there are considerable vehicle passing combinations, how to find an efficient vehicle passing sequence in a short time becomes a big challenge, especially for more than one intersection....

An elementary proof of Marcellini Sbordone semicontinuity theorem

Tomáš G. Roskovec, Filip Soudský (2023)

Kybernetika

The weak lower semicontinuity of the functional F ( u ) = Ω f ( x , u , u ) d x is a classical topic that was studied thoroughly. It was shown that if the function f is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on W 1 , p ( Ω ) . However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.

An Elliptic Neumann Problem with Subcritical Nonlinearity

Jan Chabrowski, Kyril Tintarev (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We establish the existence of a solution to the Neumann problem in the half-space with a subcritical nonlinearity on the boundary. Solutions are obtained through the constrained minimization or minimax. The existence of solutions depends on the shape of a boundary coefficient.

An estimation of the controllability time for single-input systems on compact Lie Groups

Andrei Agrachev, Thomas Chambrion (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Geometric control theory and Riemannian techniques are used to describe the reachable set at time t of left invariant single-input control systems on semi-simple compact Lie groups and to estimate the minimal time needed to reach any point from identity. This method provides an effective way to give an upper and a lower bound for the minimal time needed to transfer a controlled quantum system with a drift from a given initial position to a given final position. The bounds include diameters...

An example in the gradient theory of phase transitions

Camillo De Lellis (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We prove by giving an example that when n 3 the asymptotic behavior of functionals Ω ε | 2 u | 2 + ( 1 - | u | 2 ) 2 / ε is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

An example in the gradient theory of phase transitions

Camillo De Lellis (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove by giving an example that when n ≥ 3 the asymptotic behavior of functionals Ω ε | 2 u | 2 + ( 1 - | u | 2 ) 2 / ε is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

Currently displaying 461 – 480 of 681