Displaying 581 – 600 of 4405

Showing per page

Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems

Jozef Kačur, Alexander Ženíšek (1986)

Aplikace matematiky

The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler’s backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish...

Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control

Ryan Hynd (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study the partial differential equation         max{Lu − f, H(Du)} = 0 where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet problem that has a Hölder continuous gradient. We also show that if H is uniformly convex, the gradient of this solution...

Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market

René Henrion, Jiří Outrata, Thomas Surowiec (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order to justify using M-stationarity conditions. Third,...

Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market∗

René Henrion, Jiří Outrata, Thomas Surowiec (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the modeling of competition in an electricity spot market (under ISO regulation). For a characterization of equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of a certain multifunction has to be verified in order...

Anisotropic functions : a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Anisotropic functions: a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the 1950's and 1960's surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments...

Anti-periodic solutions to a parabolic hemivariational inequality

Jong Yeoul Park, Hyun Min Kim, Sun Hye Park (2004)

Kybernetika

In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form b ( u ) , where b L loc ( R ) . Extending b to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.

Currently displaying 581 – 600 of 4405