The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 621 –
640 of
4417
We consider the problem of approximating a probability measure defined on a metric space
by a measure supported on a finite number of points. More specifically we seek the
asymptotic behavior of the minimal Wasserstein distance to an approximation when the
number of points goes to infinity. The main result gives an equivalent when the space is a
Riemannian manifold and the approximated measure is absolutely continuous and compactly
supported.
We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.
We consider the problem of approximating a probability measure defined on a metric space
by a measure supported on a finite number of points. More specifically we seek the
asymptotic behavior of the minimal Wasserstein distance to an approximation when the
number of points goes to infinity. The main result gives an equivalent when the space is a
Riemannian manifold and the approximated measure is absolutely continuous and compactly
supported.
We give results for the approximation of a laminate with
varying volume fractions for multi-well energy minimization
problems modeling martensitic crystals that
can undergo either an orthorhombic
to monoclinic or a cubic to tetragonal transformation.
We construct energy minimizing sequences of deformations which satisfy
the corresponding boundary condition, and we
establish a series of error bounds in terms of the elastic energy
for the approximation of the limiting macroscopic
deformation and...
A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri,...
In this paper we study an approximation scheme for a class of control
problems involving an ordinary control v, an impulsive
control u and its derivative . Adopting a space-time
reparametrization of the problem which adds one variable to the state
space we overcome some difficulties connected to the presence of .
We construct an approximation scheme for that augmented system,
prove that it converges to the value function of the augmented
problem and establish an error estimates in L∞ for this
approximation....
This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of . This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.
This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of
. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.
Currently displaying 621 –
640 of
4417