Canonical greedy algorithms and dynamic programming
Las propiedades geométricas del conjunto factible del dual de un problema semiinfinito lineal son análogas a las correspondientes para el caso finito. En este trabajo mostramos cómo, a partir de la caracterización algebraica de vértices y direcciones extremas, se consigue la correspondiente para aristas infinitas, estableciéndose así las bases para una extensión del método simplex a programas semiinfinitos lineales.
In this paper we complete the characterization of those , and such that is limit of a sequence of obstacles where
In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam....
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
In this work we consider a solid body constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces and a density of forces acting on the boundary where the real is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...
In this work we consider a solid body constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces and a density of forces acting on the boundary where the real is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...