The search session has expired. Please query the service again.

Displaying 861 – 880 of 4417

Showing per page

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane

Yuri L. Sachkov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.

Conjugate-cut loci and injectivity domains on two-spheres of revolution

Bernard Bonnard, Jean-Baptiste Caillau, Gabriel Janin (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine...

Connected components of sets of finite perimeter and applications to image processing

Luigi Ambrosio, Vicent Caselles, Simon Masnou, Jean-Michel Morel (2001)

Journal of the European Mathematical Society

This paper contains a systematic analysis of a natural measure theoretic notion of connectedness for sets of finite perimeter in N , introduced by H. Federer in the more general framework of the theory of currents. We provide a new and simpler proof of the existence and uniqueness of the decomposition into the so-called M -connected components. Moreover, we study carefully the structure of the essential boundary of these components and give in particular a reconstruction formula of a set of finite...

Connecting topological Hopf singularities

Robert Hardt, Tristan Rivière (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Smooth maps between riemannian manifolds are often not strongly dense in Sobolev classes of finite energy maps, and an energy drop in a limiting sequence of smooth maps often is accompanied by the production (or bubbling) of an associated rectifiable current. For finite 2-energy maps from the 3 ball to the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable current occurs whose boundary is the...

Conservation law constrained optimization based upon front-tracking

Martin Gugat, Michaël Herty, Axel Klar, Gunter Leugering (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one–sided directional derivatives of the objective functions. The results can be used...

Conservation law constrained optimization based upon Front-Tracking

Martin Gugat, Michaël Herty, Axel Klar, Gunter Leugering (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one–sided directional derivatives of the objective functions. The results can be used...

Constant selections and minimax inequalities

Mircea Balaj (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish two constant selection theorems for a map whose dual is upper or lower semicontinuous. As applications, matching theorems, analytic alternatives, and minimax inequalities are obtained.

Constrained optimization: A general tolerance approach

Tomáš Roubíček (1990)

Aplikace matematiky

To overcome the somewhat artificial difficulties in classical optimization theory concerning the existence and stability of minimizers, a new setting of constrained optimization problems (called problems with tolerance) is proposed using given proximity structures to define the neighbourhoods of sets. The infimum and the so-called minimizing filter are then defined by means of level sets created by these neighbourhoods, which also reflects the engineering approach to constrained optimization problems....

Currently displaying 861 – 880 of 4417