Displaying 141 – 160 of 4405

Showing per page

A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators

Qi Lü (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, a lower bound is established for the local energy of partial sum of eigenfunctions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with general boundary condition. This result is a consequence of a new pointwise and weighted estimate for Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical point location in the manifold, and also two interpolation results for solutions of elliptic equations with lateral...

A mathematical model for the recovery of human and economic activities in disaster regions

Atsushi Kadoya, Nobuyuki Kenmochi (2014)

Mathematica Bohemica

In this paper a model for the recovery of human and economic activities in a region, which underwent a serious disaster, is proposed. The model treats the case that the disaster region has an industrial collaboration with a non-disaster region in the production system and, especially, depends upon each other in technological development. The economic growth model is based on the classical theory of R. M. Solow (1956), and the full model is described as a nonlinear system of ordinary differential...

A Mean Value Theorem for non Differentiable Mappings in Banach Spaces

Deville, Robert (1995)

Serdica Mathematical Journal

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition....

A method for constructing ε-value functions for the Bolza problem of optimal control

Jan Pustelnik (2005)

International Journal of Applied Mathematics and Computer Science

The problem considered is that of approximate minimisation of the Bolza problem of optimal control. Starting from Bellman's method of dynamic programming, we define the ε-value function to be an approximation to the value function being a solution to the Hamilton-Jacobi equation. The paper shows an approach that can be used to construct an algorithm for calculating the values of an ε-value function at given points, thus approximating the respective values of the value function.

A metric approach to a class of doubly nonlinear evolution equations and applications

Riccarda Rossi, Alexander Mielke, Giuseppe Savaré (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slopefor gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract...

A minimax inequality with applications to existence of equilibrium point and fixed point theorems

Xie Ding, Kok-Keong Tan (1992)

Colloquium Mathematicae

Ky Fan’s minimax inequality [8, Theorem 1] has become a versatile tool in nonlinear and convex analysis. In this paper, we shall first obtain a minimax inequality which generalizes those generalizations of Ky Fan’s minimax inequality due to Allen [1], Yen [18], Tan [16], Bae Kim Tan [3] and Fan himself [9]. Several equivalent forms are then formulated and one of them, the maximal element version, is used to obtain a fixed point theorem which in turn is applied to obtain an existence theorem of an...

A minimum effort optimal control problem for elliptic PDEs

Christian Clason, Kazufumi Ito, Karl Kunisch (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L∞-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion equation...

A minimum effort optimal control problem for elliptic PDEs

Christian Clason, Kazufumi Ito, Karl Kunisch (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L∞-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion equation...

Currently displaying 141 – 160 of 4405