Bohr compactifications of discrete structures
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
Boolean algebras and ultracompactness
Boolean Rings that are Baire Spaces
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.Weak completeness properties of Boolean rings are related to the property of being a Baire space (when suitably topologised) and to renorming properties of the Banach spaces of continuous functions on the corresponding...
Boolean semigroup rings and exponentials of compact zero-dimensional spaces
Booleanization
Booleanization of uniform frames
Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise.
Bootstrapping Kirszbraun's extension theorem
We show how Kirszbraun's theorem on extending Lipschitz mappings in Hilbert space implies its own generalization. There is a continuous extension operator preserving the Lipschitz constant of every mapping.
Borel and Baire reducibility
We prove that a Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable level of the hereditarily countable sets. We also prove the following result which was originally claimed in [FS89]: the zero density ideal of sets of natural numbers is not classifiable by countable structures.
Borel chromatic number of closed graphs
We construct, for each countable ordinal ξ, a closed graph with Borel chromatic number 2 and Baire class ξ chromatic number ℵ₀.
Borel classes of uniformizations of sets with large sections
We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a uniformization which is the graph of a -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with sections.
Borel equivalence and isomorphism of coanalytic sets [Book]
Borel extensions of Baire measures
We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík,...
Borel extensions of Baire measures in ZFC
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
Borel partitions of unity and lower Carathéodory multifunctions
We prove the existence of Carathéodory selections and representations of a closed convex valued, lower Carathéodory multifunction from a set A in into a separable Banach space Y, where ℰ is a sub-σ-field of the Borel σ-field ℬ(E) of a Polish space E, X is a Polish space and A is the Suslin operation. As applications we obtain random versions of results on extensions of continuous functions and fixed points of multifunctions. Such results are useful in the study of random differential equations...
Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space
For a linear operator T in a Banach space let denote the point spectrum of T, let for finite n > 0 be the set of all such that dim ker(T - λ) = n and let be the set of all for which ker(T - λ) is infinite-dimensional. It is shown that is , is and for each finite n the set is the intersection of an set and a set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more detailed decomposition...
Borel sets in compact spaces: some Hurewicz type theorems
Borel sets of exact class
Borel sets with -section
Borel sets with σ-compact sections for nonseparable spaces
We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.