The (dis)connectedness of products of Hausdorff spaces in the box topology
In this paper the following two propositions are proved: (a) If , , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If , , is an infinite system of Brown Hausdorff topological spaces then the box product is also Brown Hausdorff, and hence, it is connected. A space is Brown if...