Displaying 321 – 340 of 575

Showing per page

On the differential form spectrum of hyperbolic manifolds

Gilles Carron, Emmanuel Pedon (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We give a lower bound for the bottom of the L 2 differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.

On the disjoint (0,N)-cells property for homogeneous ANR's

Paweł Krupski (1993)

Colloquium Mathematicae

A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell B n into X and for each ε > 0 there exist a point y ∈ X and a map g : B n X such that ϱ(x,y) < ε, ϱ ^ ( f , g ) < ε and y g ( B n ) . It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact L C n - 1 -space then local homologies satisfy H k ( X , X - x ) = 0 for k < n and Hn(X,X-x) ≠ 0.

On the dynamics of (left) orderable groups

Andrés Navas (2010)

Annales de l’institut Fourier

We develop dynamical methods for studying left-orderable groups as well as the spaces of orderings associated to them. We give new and elementary proofs of theorems by Linnell (if a left-orderable group has infinitely many orderings, then it has uncountably many) and McCleary (the space of orderings of the free group is a Cantor set). We show that this last result also holds for countable torsion-free nilpotent groups which are not rank-one Abelian. Finally, we apply our methods to the case of braid...

Currently displaying 321 – 340 of 575