Coverings defined by Weierstraß polynomials.
Coverings of S3 branched over iterated torus links appear naturally and very often in Algebraic Geometry. The natural graph-manifold structure of the exterior of an iterated torus link induces a graph-structure in the branched covers. In this paper we give an algorithm to compute valued graphs representing a branched cover given the monodromy representation associated to the covering. The algorithm is completely mechanized in order to be programmed, and can also be used for finding representation...
On montre qu’un groupe hyperbolique non élémentaire est à croissance uniformément exponentielle, c’est-à-dire qu’il existe une constante strictement plus grande que 1, ne dépendant que du groupe , telle que le taux de croissance exponentiel de relatif à n’importe quel système générateur est plus grand que . On redémontre ce faisant qu’un groupe hyperbolique n’a qu’un nombre fini de classes de conjugaison de sous-groupes finis.
This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of...
The purpose of this article is to introduce a method for computing the homology groups of cellular complexes composed of cubes. We will pay attention to issues of storage and efficiency in performing computations on large complexes which will be required in applications to the computation of the Conley index. The algorithm used in the homology computations is based on a local reduction procedure, and we give a subquadratic estimate of its computational complexity. This estimate is rigorous in two...
Dans ce texte, on définit, pour les immersions lagrangiennes de variétés fermées dans , une notion d’aire symplectique enlacée. Puis on construit, dans le cas , un certain nombre de surfaces lagrangiennes enlaçant une aire infinie. Dans le cas des surfaces exactes, elles ont le minimum de points doubles possible permis par la théorie (sauf la sphère), c’est-à-dire moins que prévu par quelques conjectures.