Displaying 1041 – 1060 of 5443

Showing per page

Décomposition de Hodge basique pour un feuilletage riemannien

Aziz El Kacimi-Alaoui, Gilbert Hector (1986)

Annales de l'institut Fourier

Soit un feuilletage de codimension n sur une variété compacte M . On montre que le complexe des formes basiques Ω * ( M / ) admet une décomposition de Hodge. Il en résulte que la cohomologie basique H * ( M / ) de ( M , ) est de dimension finie et vérifie la dualité de Poincaré si et seulemnt si H n ( M / ) 0 .

Decomposition in the large of two-forms of constant rank

Ibrahim Dibag (1974)

Annales de l'institut Fourier

The purpose of this paper is to find necessary and sufficient conditions for globally-decomposing an exterior 2-form w , of constant rank 2 s , on a vector-bundle E , as a sum : w = y 1 y s + 1 + + y s y 2 s . The general theory is applied to low dimensional manifolds, spheres, real and complex projective spaces.

Deformation Lemma, Ljusternik-Schnirellmann Theory and Mountain Pass Theorem on C1-Finsler Manifolds

Ribarska, Nadezhda, Tsachev, Tsvetomir, Krastanov, Mikhail (1995)

Serdica Mathematical Journal

∗Partially supported by Grant MM409/94 Of the Ministy of Science and Education, Bulgaria. ∗∗Partially supported by Grant MM442/94 of the Ministy of Science and Education, Bulgaria.Let M be a complete C1−Finsler manifold without boundary and f : M → R be a locally Lipschitz function. The classical proof of the well known deformation lemma can not be extended in this case because integral lines may not exist. In this paper we establish existence of deformations generalizing the classical result. This...

Deformations of Lie brackets: cohomological aspects

Marius Crainic, Ieke Moerdijk (2008)

Journal of the European Mathematical Society

We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.

Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif (2020)

Communications in Mathematics

We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

Currently displaying 1041 – 1060 of 5443