The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 382

Showing per page

Hausdorff measures and the Morse-Sard theorem.

Carlos Gustavo T. de A. Moreira (2001)

Publicacions Matemàtiques

Let F : U ⊂ Rn → Rm be a differentiable function and p < m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set Cp(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(Cp(F)) is zero.

Infinitely many solutions of a second-order p -Laplacian problem with impulsive condition

Libo Wang, Weigao Ge, Minghe Pei (2010)

Applications of Mathematics

Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a p -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the p -Laplacian impulsive problem.

Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces

Ghasem A. Afrouzi, Shaeid Shokooh, Nguyen T. Chung (2019)

Commentationes Mathematicae Universitatis Carolinae

Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.

Currently displaying 141 – 160 of 382