The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 66

Showing per page

Non-topological condensates in self-dual Chern-Simons gauge theory

Takashi Suzuki, Futoshi Takahashi (2004)

Banach Center Publications

This note is concerned with the recent paper "Non-topological N-vortex condensates for the self-dual Chern-Simons theory" by M. Nolasco. Modifying her arguments and statements, we show that the existence of "non-topological" multi-vortex condensates follows when the number of prescribed vortex points is greater than or equal to 2.

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi (2005)

Collectanea Mathematica

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).

Poisson structures on certain moduli spaces for bundles on a surface

Johannes Huebschmann (1995)

Annales de l'institut Fourier

Let Σ be a closed surface, G a compact Lie group, with Lie algebra g , and ξ : P Σ a principal G -bundle. In earlier work we have shown that the moduli space N ( ξ ) of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from N ( ξ ) onto a certain representation space Rep ξ ( Γ , G ) , in fact a diffeomorphism, with reference to suitable smooth structures C ( N ( ξ ) ) and C Rep ξ ( Γ , G ) , where Γ denotes the universal central extension of...

Currently displaying 21 – 40 of 66