Displaying 201 – 220 of 265

Showing per page

Inverse problem in engineering plasticity: a quadratic programming approach

Giulio Maier (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera un modello discreto (per elementi finiti) di un solido o un sistema strutturale perfettamente elastoplastico, con condizioni di snervamento «linearizzate a tratti», nell’ipotesi di olonomia assunta per processi di caricamento proporzionali. Supponendo noti su base sperimentale certi spostamenti sotto assegnate azioni esterne, si formula il problema di identificare i limiti di snervamento, ossia le resistenze locali. Si dimostra che questo problema inverso di meccanica strutturale non...

Inverse problems in spaces of measures

Kristian Bredies, Hanna Katriina Pikkarainen (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...

Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao, Heping Dong, Fuming Ma (2018)

Applications of Mathematics

We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...

Inverse source problem in a space fractional diffusion equation from the final overdetermination

Amir Hossein Salehi Shayegan, Reza Bayat Tajvar, Alireza Ghanbari, Ali Safaie (2019)

Applications of Mathematics

We consider the problem of determining the unknown source term f = f ( x , t ) in a space fractional diffusion equation from the measured data at the final time u ( x , T ) = ψ ( x ) . In this way, a methodology involving minimization of the cost functional J ( f ) = 0 l ( u ( x , t ; f ) | t = T - ψ ( x ) ) 2 d x is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence...

Inverted finite elements : a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of n . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.

Inverted finite elements: a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of n . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.

Involutive formulation and simulation for electroneutral microfluids

Bijan Mohammadi, Jukka Tuomela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves...

Involutive formulation and simulation for electroneutral microfluids

Bijan Mohammadi, Jukka Tuomela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves...

Is GPU the future of Scientific Computing ?

Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Perignon, Christophe Picard, Florian De Vuyst, Christophe Labourdette (2013)

Annales mathématiques Blaise Pascal

These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...

Isogeometric analysis for fluid flow problems

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Michálková, Kristýna, Turnerová, Eva (2015)

Programs and Algorithms of Numerical Mathematics

The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are demonstrated...

Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya, Neela Nataraj (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ = ( ψ i j ) 1 i , j 2 and displacement...

Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya, Neela Nataraj (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ = ( ψ i j ) 1 i , j 2 and displacement...

Currently displaying 201 – 220 of 265