Displaying 461 – 480 of 497

Showing per page

Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation

Kenta Kobayashi, Takuya Tsuchiya (2016)

Applications of Mathematics

We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed...

Extending the applicability of Newton's method using nondiscrete induction

Ioannis K. Argyros, Saïd Hilout (2013)

Czechoslovak Mathematical Journal

We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete...

Exterior problem of the Darwin model and its numerical computation

Lung-An Ying, Fengyan Li (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell’s equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.

Exterior problem of the Darwin model and its numerical computation

Lung-an Ying, Fengyan Li (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell's equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems

Raheleh Shokrpour, Ghodrat Ebadi (2022)

Applications of Mathematics

Recently, Na Huang and Changfeng Ma in (2016) proposed two kinds of typical practical choices of the PPS method. In this paper, we extrapolate two versions of the PPS iterative method, and we introduce the extrapolated Hermitian and skew-Hermitian positive definite and positive semi-definite splitting (EHPPS) iterative method and extrapolated triangular positive definite and positive semi-definite splitting (ETPPS) iterative method. We also investigate convergence analysis and consistency of the...

Currently displaying 461 – 480 of 497