The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 861 – 880 of 1956

Showing per page

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as...

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers...

A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with shells...

A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows

Jean-Frédéric Gerbeau, Marina Vidrascu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a quasi-Newton algorithm for solving fluid-structure interaction problems. The basic idea of the method is to build an approximate tangent operator which is cost effective and which takes into account the so-called added mass effect. Various test cases show that the method allows a significant reduction of the computational effort compared to relaxed fixed point algorithms. We present 2D and 3D fluid-structure simulations performed either with a simple 1D structure model or with...

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides

Yasunori Futamura, Takahiro Yano, Akira Imakura, Tetsuya Sakurai (2017)

Applications of Mathematics

We consider solving complex symmetric linear systems with multiple right-hand sides. We assume that the coefficient matrix has indefinite real part and positive definite imaginary part. We propose a new block conjugate gradient type method based on the Schur complement of a certain 2-by-2 real block form. The algorithm of the proposed method consists of building blocks that involve only real arithmetic with real symmetric matrices of the original size. We also present the convergence property of...

A Recession Notion for a Class of Monotone Bivariate Functions

Moudafi, A. (2000)

Serdica Mathematical Journal

Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.

A recovery-based a posteriori error estimator for the generalized Stokes problem

Pengzhan Huang, Qiuyu Zhang (2020)

Applications of Mathematics

A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized P 1 - P 0 (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.

A reduced basis element method for the steady Stokes problem

Alf Emil Løvgren, Yvon Maday, Einar M. Rønquist (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same...

A Reduced Basis Enrichment for the eXtended Finite Element Method

E. Chahine, P. Laborde, Y. Renard (2009)

Mathematical Modelling of Natural Phenomena

This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies....

A reduced model for Darcy’s problem in networks of fractures

Luca Formaggia, Alessio Fumagalli, Anna Scotti, Paolo Ruffo (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures...

Currently displaying 861 – 880 of 1956