The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1461 – 1480 of 9172

Showing per page

An efficient hp spectral collocation method for nonsmooth optimal control problems

Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi, Mohammad Hadi Noori Skandari, Dumitru Baleanu (2022)

Kybernetika

One of the most challenging problems in the optimal control theory consists of solving the nonsmooth optimal control problems where several discontinuities may be present in the control variable and derivative of the state variable. Recently some extended spectral collocation methods have been introduced for solving such problems, and a matrix of differentiation is usually used to discretize and to approximate the derivative of the state variable in the particular collocation points. In such methods,...

An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems

Molati, Motlatsi, Murakawa, Hideki (2017)

Proceedings of Equadiff 14

This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible...

An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems

Xiao-Chuan Cai, Leszek Marcinkowski, Vassilevski, Panayot S. (2005)

Applications of Mathematics

This paper extends previous results on nonlinear Schwarz preconditioning (Cai and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The nonlocal finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in Jones...

An empirical evaluation of small area estimators.

Álex Costa, Albert Satorra, Eva Ventura (2003)

SORT

This paper compares five small area estimators. We use Monte Carlo simulation in the context of both artificial and real populations. In addition to the direct and indirect estimators, we consider the optimal composite estimator with population weights, and two composite estimators with estimated weights: one that assumes homogeneity of within area variance and squared bias and one that uses area-specific estimates of variance and squared bias. In the study with real population, we found that among...

An energy analysis of degenerate hyperbolic partial differential equations.

William J. Layton (1984)

Aplikace matematiky

An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region Ω (E) ( t u t ) t = i , j = 1 ( a i j ( x ) u x i ) x j - a 0 ( x ) u + f ( u ) , subject to the initial and boundary conditions, u = 0 on Ω and u ( x , 0 ) = u 0 . (E) is degenerate at t = 0 and thus, even in the case f 0 , time derivatives of u will blow up as t 0 . Also, in the case where f is locally Lipschitz, solutions of (E) can blow up for t > 0 in finite time. Stability and convergence of the scheme in W 2 , 1 is shown in the linear case without assuming u t t (which can blow up as t 0 is...

An energy-preserving Discrete Element Method for elastodynamics∗

Laurent Monasse, Christian Mariotti (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...

An energy-preserving Discrete Element Method for elastodynamics∗

Laurent Monasse, Christian Mariotti (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment

François Bouchut, Tomás Morales de Luna (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in...

An entropy stable finite volume method for a compressible two phase model

Eduard Feireisl, Mădălina Petcu, Bangwei She (2023)

Applications of Mathematics

We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

Currently displaying 1461 – 1480 of 9172