The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1461 –
1480 of
9172
One of the most challenging problems in the optimal control theory consists of solving the nonsmooth optimal control problems where several discontinuities may be present in the control variable and derivative of the state variable. Recently some extended spectral collocation methods have been introduced for solving such problems, and a matrix of differentiation is usually used to discretize and to approximate the derivative of the state variable in the particular collocation points. In such methods,...
This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible...
This paper extends previous results on nonlinear Schwarz preconditioning (Cai and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The nonlocal finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in Jones...
This paper compares five small area estimators. We use Monte Carlo simulation in the context of both artificial and real populations. In addition to the direct and indirect estimators, we consider the optimal composite estimator with population weights, and two composite estimators with estimated weights: one that assumes homogeneity of within area variance and squared bias and one that uses area-specific estimates of variance and squared bias. In the study with real population, we found that among...
An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region
(E) , subject to the initial and boundary conditions, on and . (E) is degenerate at and thus, even in the case , time derivatives of will blow up as . Also, in the case where is locally Lipschitz, solutions of (E) can blow up for in finite time.
Stability and convergence of the scheme in is shown in the linear case without assuming (which can blow up as is...
We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...
We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...
We consider the system of partial differential equations governing
the one-dimensional flow of two superposed immiscible layers of
shallow water. The difficulty in this system comes
from the coupling terms involving some derivatives of the unknowns
that make the system nonconservative, and eventually nonhyperbolic.
Due to these terms, a numerical scheme obtained by performing an
arbitrary scheme to each layer, and using time-splitting or
other similar techniques leads to instabilities in...
We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.
In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.
In this work we introduce an accurate solver for the
Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.
Currently displaying 1461 –
1480 of
9172