The search session has expired. Please query the service again.
Displaying 141 –
160 of
421
This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...
This paper deals with the diffusion limit of a kinetic equation where the
collisions are modeled by a Lorentz type operator. The main aim is to construct a
discrete scheme to approximate this equation which gives for any value of the
Knudsen number, and in particular at the diffusive limit, the right discrete
diffusion equation with the same value of the diffusion coefficient as in the
continuous case. We are also naturally interested with a discretization which
can be used with few velocity discretization...
This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves , . The curves are driven by the normal velocity which is the function of curvature and the position. The evolution law reads as: . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...
We introduce a new way of computation of time dependent partial differential equations using hybrid method FEM in space and FDM in time domain and explicit computational scheme. The key idea is quick transformation of standard basis functions into new simple basis functions. This new way is used for better computational efficiency. We explain this way of computation on an example of elastodynamic equation using quadrilateral elements. However, the method can be used for more types of elements and...
We rigorously derive energy estimates for the second order vector wave equation with gauge condition for the electric field with non-constant electric permittivity function. This equation is used in the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Our numerical experiments illustrate efficiency of the modified hybrid scheme in two and three space dimensions when the method is applied for generation of backscattering data in the reconstruction...
The phase relaxation model is a diffuse interface model with
small parameter ε which
consists of a parabolic PDE for temperature
θ and an ODE with double obstacles
for phase variable χ.
To decouple the system a semi-explicit Euler method with variable
step-size τ is used for time discretization, which requires
the stability constraint τ ≤ ε. Conforming piecewise
linear finite elements over highly graded simplicial meshes
with parameter h are further employed for space discretization.
A posteriori...
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.
Currently displaying 141 –
160 of
421