The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
1417
In this paper, a new a posteriori error estimator for nonconforming convection diffusion
approximation problem, which relies on the small discrete problems solution in stars, has
been established. It is equivalent to the energy error up to data oscillation without any
saturation assumption nor comparison with residual estimator
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...
For a nonconforming finite element approximation of an elliptic model
problem, we propose a posteriori error estimates in the energy norm
which use as an additive term the “post-processing error” between
the original nonconforming finite element solution and an easy
computable conforming approximation of that solution.
Thus, for the error analysis, the existing theory from the conforming
case can be used together with some simple additional arguments.
As an essential point, the property is...
In this paper, we consider mortar-type Crouzeix-Raviart element discretizations for second order elliptic problems with discontinuous coefficients. A preconditioner for the FETI-DP method is proposed. We prove that the condition number of the preconditioned operator is bounded by , where and are mesh sizes. Finally, numerical tests are presented to verify the theoretical results.
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
The convergence and efficiency of the reduced basis method used for the approximation of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori convergence for one of the approaches used for the selection of these elements, the greedy algorithm. Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies, we...
We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic...
We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation....
Currently displaying 181 –
200 of
1417